Вопрос задан 11.02.2019 в 11:07. Предмет Геометрия. Спрашивает Зинолла Рустем.

Основание прямой призмы – равнобочная трапеция, одно из оснований которой в два раза больше

другого. Непараллельные боковые грани призмы – квадраты. Высота призмы равна 6 см. Площадь боковой поверхности призмы равна 144 см . Вычислите объем призмы.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Утяшова Дарья.
ABCDA₁B₁C₁D₁_прямая призма .
Допустим основание трапеция ABCD ;AB =CD = AA₁ =6 см ;AD | | BC ;  AD=2x ;  BC =x ; Sбок =144 см².
---------------------------------
V  =S(ABCD)*AA₁--> ?
Sбок =144 см² ; 
Sбок =(AB+BC+ CD +DA)*AA₁;
(6+x+6+2x ) *6 =144 ⇒x=4.
h =√((AB² - ((AD-BC)/2)²) =√((6² -((8-4)/2)²) =√(36 -4) =4√2 (см).
S (ABCD)= (AD+BC)/2 * h =(8+4)/2*4√2 =24√2 (см²);
 V   = S(ABCD)*AA₁ = 24√2 см²*6 см= 144√2 см³.

ответ : 144√2 см³

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос