Вопрос задан 25.04.2018 в 11:26. Предмет Геометрия. Спрашивает Саядян Эвелина.

В треугольнике ABC известны длины сторон AB=40, AC=64, точка O — центр окружности, описанной около

треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Емельянова Яна.

Продлим BD за точку D до пересечения с окружностью в точке Е. Т.к. прямая AO содержит диаметр, а BE ей перпендикулярна, то треугольник ABE - равнобедренный. Значит ∠ABE=∠AEB. Кроме того, ∠AEB=∠ACB, как вписанные в окружность, поэтому ∠ABE=∠ACB. Значит треугольники ABD и ACB подобны по двум углам (∠ABD=∠ACB и ∠BAC - общий). Таким образом, AB/AC=AD/AB, т.е. 40/64=(64-DC)/40, откуда DС=39.





0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос