
Вопрос задан 22.04.2018 в 22:11.
Предмет Геометрия.
Спрашивает Черняк Павел.
Как найти площу поверхни правильной трохугольнай пирамиды,если сторона основы 2 см,а все
двуггранныя углы при основе 30 градусов

Ответы на вопрос

Отвечает Коваленко Вероника.
Высота основания пирамиды (она же и медиана и биссектриса) равна:
ho=a*cos30 = 2*(√3/2) = √3 см.
Высоту пирамиды найдём из треугольника, полученного осевым сечением пирамиды через боковое ребро и апофему А.
Высота пирамиды H своим основанием делит высоту основания ho в отношении 2:1 считая от вершины.
Находим высоту H пирамиды:
H = (1/3)ho*tg30° = (√3/3)*(1/√3) = 1/3 см.
Апофема А равна √(Н²+((1/3)ho)²) = √((1/9)+3/9) = 2/3 см.
Площадь боковой поверхности равна:
Sбок = (1/2)А*Р = (1/2)*(2/3)*(2*3) = 2 см².
Площадь основания So = a²√3/4 = 2²√3/4 = √3.
Площадь полной поверхности пирамиды равна:
S =Sбок + So = (2+√3) см².


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili