Вопрос задан 07.01.2019 в 05:02. Предмет Геометрия. Спрашивает Бобпат Александр.

Как найти площадь правильного шестиугольника если его большая диагональ равна 4

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Таранов Миша.

Обозначения во вложении.

Проведем в шестиугольнике все большие диагонали.

Т.к. шестиугольник правильный, то:

все его стороны равны, т.е. AB=BC=CD=DE=EF=FA

Большие диагонали пересекаются в одной точке О (центр описанной окружности)

Большие диагонали равны между собой(AD=BE=CF) и в точке О делятся пополам (AO=BO=CO=DO=EO=FO).

Исходя из этого, треугольники AOB, BOC,COD,DOE,EOF,FOA равны между собой по трем сторонам и являются равносторонними. Угол AOB=360/6=60 градусов. Площадь правильного треугольника равна S=a^2*(корень квадратный из 3)/2

а=2, S=корень квадратный из 3

Площадь шестиугольника=6*S=6*(корень квадратный из 3)

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос