
Вопрос задан 07.01.2019 в 05:02.
Предмет Геометрия.
Спрашивает Бобпат Александр.
Как найти площадь правильного шестиугольника если его большая диагональ равна 4


Ответы на вопрос

Отвечает Таранов Миша.
Обозначения во вложении.
Проведем в шестиугольнике все большие диагонали.
Т.к. шестиугольник правильный, то:
все его стороны равны, т.е. AB=BC=CD=DE=EF=FA
Большие диагонали пересекаются в одной точке О (центр описанной окружности)
Большие диагонали равны между собой(AD=BE=CF) и в точке О делятся пополам (AO=BO=CO=DO=EO=FO).
Исходя из этого, треугольники AOB, BOC,COD,DOE,EOF,FOA равны между собой по трем сторонам и являются равносторонними. Угол AOB=360/6=60 градусов. Площадь правильного треугольника равна S=a^2*(корень квадратный из 3)/2
а=2, S=корень квадратный из 3
Площадь шестиугольника=6*S=6*(корень квадратный из 3)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili