
Сечение!Помогите,пожалуйста;))))1)Дан куб ABCDA₁B₁C₁D₁.Постройте сечение куба плоскостью
А₁ВС.Постройте сечение куба плоскостью,проходящей через точку М парельно плоскости А₁ВС.2)Точка М лежит на ребре CD тетраэдра ABCD.Построить сечение тетраэдра плоскостью,А) проходящей через точку М,если МD:МС=5:2.Б)проходящящей через точки M,N и К,причем М-середина CD,N∈BC,NC=2BN,K∈AB,BK=2AK.B)проходящей через точку М параллельно прямым BD и АС,если МС:СD=2:7Каким должно быть отношение МС:СD для того,чтобы такое сечение было ромбом?

Ответы на вопрос

1) Секущая плоскость пересекает параллельные грани по параллельным прямым. Она пересекает грань ВВ₁С₁С по прямой ВС. Так как точка А₁ принадлежит сечению, то секущая плоскость пересекает грань АА₁D₁D по прямой A₁D₁ (BC║A₁D₁).
A₁D₁CB - искомое сечение.
Расположение точки М не дано. Возьмем точку на ребре АА₁.
По признаку параллельности плоскостей, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны.
Проведем в грани АА₁В₁В отрезок MF║А₁В, в грани AA₁D₁D отрезок МЕ║A₁D₁.
Плоскость грани АВСD пересекает параллельные плоскости (желтую и голубую) по параллельным прямым, поэтому в грани АВСD проводим отрезок FK║BC. Соединяем точки Е и К.
MEKF - искомое сечение.
2) В задании пунктов а) и в) точка М расположена одинаково. В пункте а) не сказано, как проходит сечение, а через одну точку можно провести бесконечно много сечений. Поэтому эти пункты объединим, стоим сечение тетраэдра плоскостью, проходящей через точку М, параллельно прямым АС и BD.
а) и в) Проведем в грани ACD МК║АС, а в грани BCD МР║BD.
МР║BD, а значит и плоскости ABD. Сечение проходит через МР и пересекает ABD, значит линия пересечения параллельна BD. Проводим КЕ║BD.
МК║АС, а значит и плоскости АВС. Сечение проходит через МК и пересекает АВС, значит линия пересечения параллельна АС. Значит получилось, что ЕР║АС.
МКЕР - искомое сечение. Имеет вид параллелограмма, так как противоположные стороны параллельны (МК и РЕ параллельны АС, значит МК║РЕ, КЕ и МР параллельны BD, значит КЕ║МР).
Сечение может быть ромбом, если речь идет о правильном тетраэдре и точка М будет серединой стороны CD. Тогда все стороны сечения будут средними линиями граней тетраэдра и будут равны.
б) Соединим точки, находящиеся в одной грани: М и N, N и К.
Прямая MN лежит в грани BCD, эта грань пересекает плоскость грани ABD по прямой BD. Продлим MN до пересечения с прямой BD (точка Р).
Теперь точки Р и К лежат в плоскости одной грани ABD; проводим прямую РК. Она пересечет ребро AD в точке Т.
Соединяем М и Т.
МNKT - искомое сечение.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili