Вопрос задан 21.07.2018 в 13:08. Предмет Геометрия. Спрашивает Кабдылкаримов Карим.

МОЖНО НОРМАЛЬНОЕ РЕШЕНИЕ НА ЛИСТКЕ!!! Все ребра треугольной призмы равны.Найдите площадь основания

призмы,если площадь ее полной поверхности равна 8+16 корень из 3
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Миронова Диана.

Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
-------- 
 
Полная площадь призмы равна сумме площадей двух оснований и   площади боковой поверхности.  
 Пусть ребро призмы равно а.   
 Грани - квадраты, их 3.   
 S бок=3а²   
S двух осн.=( 2 а²√3):4=( а²√3):2 
 По условию  
 3а²+(а²√3):2=8+16√3   
Умножим  обе стороны уравнения на 2 и вынесем а² за скобки:     а²(6+√3)=16+32√3)=16(1+2√3)    
  а²=16(1+2√3):(6+√3)   
Подставим значение  а² в формулу площади правильного треугольника:   
 S=[16*(1+2√3):(6+√3)]*√3:4  
 S=4(√3+6):(6+√3)=4 (ед. площади)
--------  
 Думаю, решение понятно.  Перенести решение на листок для Вас не составит труда.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос