
Вопрос задан 12.07.2018 в 07:27.
Предмет Геометрия.
Спрашивает Морозова Снежана.
Найти площадь треугольника, описанного около окружности, зная, что периметр треугольника 200 см и
расстояние от центра окружности до хорды длиной в 16 см равно 15 см. Найти отношение радиуса окружности, вписанной в равнобедренный прямоугольный треугольник, к гипотенузе этого треугольника. Помогите срочно пожалуйста!

Ответы на вопрос

Отвечает Яковлева Валерия.
ΔАВС описан около окружности с центром О
периметр Равс=200 см
хорда КМ=16 см
расстояние от центра О до КМ - это перпендикуляр ОЕ=15 см к хорде КМ.
Рассмотрим ΔКОМ - он равнобедренный (ОК=ОМ как радиусы), значит ОЕ - не только высота, но и медиана, и биссектриса.
Тогда ОК=√(ОЕ²+(КМ/2)²)=√(15²+(16/2)²)=√(225+64)=√289=17 см
Площадь Sавс=Р*R/2=Р*ОК/2=200*17/2=1700 см²
Прямоугольный равнобедренный ΔАВС:
катеты АВ=ВС=х
гипотенуза АС=√(АВ²+ВС²)=√2х²=х√2
Площадь Sавс=АВ*ВС/2=х²/2
Периметр Равс=2АВ+АС=2х+х√2
Радиус вписанной окружности r=2Sавс/Равс=2х²/2(2х+х√2)=х/(2+√2)
Отношение r/АС=х/(2+√2):х√2=1/(√2(2+√2))=1/(2√2+2)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili