Вопрос задан 05.07.2018 в 11:22. Предмет Геометрия. Спрашивает Ларионова Арина.

В параллелограмме ABCD биссектрисы углов B и D пересекают диагональ AC в точках K и P

соответственно.(рис 10)Докажите,что четырехугольник BPDK-параллелограмм
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Клипа Сергей.

Противоположные стороны параллелограмма равны и параллельны.
AB=CD
∠KAB=∠PCD (накрест лежащие при AB||CD)
Противоположные углы параллелограмма равны.
∠ABC=∠CDA <=> ∠ABC/2=∠CDA/2 <=> ∠ABK=∠CDP
△ABK=△CDP (по стороне и прилежащим к ней углам)
AK=CP

O - точка пересечения диагоналей ABCD.
Диагонали паралелограмма точкой пересечения делятся пополам.
AO=OC, BO=OD
AO-AK=CO-CP <=> KO=OP

Если в четырехугольнике диагонали точкой пересечения делятся пополам, то четырехугольник - параллелограмм.
BO=OD, KO=OP => BPDK - параллелограмм.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос