
Вопрос задан 05.07.2018 в 11:22.
Предмет Геометрия.
Спрашивает Ларионова Арина.
В параллелограмме ABCD биссектрисы углов B и D пересекают диагональ AC в точках K и P
соответственно.(рис 10)Докажите,что четырехугольник BPDK-параллелограмм


Ответы на вопрос

Отвечает Клипа Сергей.
Противоположные стороны параллелограмма равны и параллельны.
AB=CD
∠KAB=∠PCD (накрест лежащие при AB||CD)
Противоположные углы параллелограмма равны.
∠ABC=∠CDA <=> ∠ABC/2=∠CDA/2 <=> ∠ABK=∠CDP
△ABK=△CDP (по стороне и прилежащим к ней углам)
AK=CP
O - точка пересечения диагоналей ABCD.
Диагонали паралелограмма точкой пересечения делятся пополам.
AO=OC, BO=OD
AO-AK=CO-CP <=> KO=OP
Если в четырехугольнике диагонали точкой пересечения делятся пополам, то четырехугольник - параллелограмм.
BO=OD, KO=OP => BPDK - параллелограмм.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili