Вопрос задан 18.06.2023 в 03:16. Предмет Геометрия. Спрашивает Акмайкин Алексей.

основи рівнобічної трапеції дорівнюють 6см і 10см, а діагональ ділить гострий кут трапеції навпіл.

знайдіть периметр трапеції​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мичкова Анастасия.

Ответ:

28 см

Объяснение:

Якщо діагональ трапеції ділить гострий кут навпіл, то бічні сторони дорівнюють меншій основі.

Р=6+6+6+10=28 см

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Звісно, давайте розглянемо це крок за кроком.

Ми маємо рівнобічну трапецію, тобто дві паралельні сторони є рівними. Давайте позначимо сторони трапеції:

AB = 6 см (одна з основ) CD = 10 см (друга основа) AC = BD (бічна сторона)

Діагональ ділить гострий кут трапеції навпіл. Це означає, що ми маємо прямокутний трикутник всередині трапеції, де діагональ є його гіпотенузою.

Ми можемо використати властивості прямокутних трикутників для знаходження інших сторін. Знаючи, що ця діагональ ділить гострий кут навпіл, ми можемо розглянути два прямокутні трикутники, утворені цією діагоналлю:

1. ΔACD (прямокутний трикутник): AC = BD (як бічна сторона трапеції) AD = DC = 6 см (пів основи) AC^2 = AD^2 + DC^2 BD^2 = 6^2 + 10^2 BD^2 = 36 + 100 BD^2 = 136

2. ΔBCD (інший прямокутний трикутник): BC = AD = 6 см (пів основи) BD = 10 см (як інша основа) BC^2 = BD^2 - DC^2 BC^2 = 10^2 - 6^2 BC^2 = 100 - 36 BC^2 = 64

Таким чином, ми знаходимо, що BC = 8 см.

Тепер, коли ми знаємо всі сторони трапеції, можемо знайти її периметр:

Периметр трапеції = AB + BC + CD + AD Периметр трапеції = 6 + 8 + 10 + 6 Периметр трапеції = 30 см

Отже, периметр цієї рівнобічної трапеції дорівнює 30 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос