Вопрос задан 21.06.2018 в 05:06. Предмет Геометрия. Спрашивает Литанова Виктория.

В правильной треугольной пирамиде сторона основания равна а, а боковые грани наклонены к плоскости

основания под углом 45 градусов. Найдите площадь боковой поверхности вписанного в пирамиду конуса.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Польская Александра.

Площадь боковой поверхности конуса равна произведению его образующей на половину длины основания.
S=l π r
Нужно найти радиус OL конуса и его образующу SL
Основание конуса - вписанный круг.
Радиус вписанной окружности правильного треугольника, выраженный через его сторону r=(а√3):6
Образующую - апофему SL сторонвы СSB - найдем из равнобедренного прямоугольного треугольника SОL.
Как гипотенуза такого треугольника,

SLОL√2=r√2=(а√6):6

Площадь боковой поверхности конуса равна
S=l π r=(а√6):6)*(а√3):6)π= (а√6)(а√3)π:12=3aπ:12= 1/4 πa√2=(πa√2):4


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос