Вопрос задан 21.02.2021 в 04:17. Предмет Геометрия. Спрашивает Петров Михаил.

Много баллов!!!!!!!!!!


0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Dmitryuk Ira.

Центр окружности, вписанной в равнобедренный треугольник с основанием, равным 8, делит высоту. проведенную к основанию, в отношении 5:4, считая от вершины треугольника. Найти радиус описанной окружности.

Обозначим треугольник АВС, АВ=ВС, АС=8. О- центр вписанной окружности, ВН - высота ( и медиана, т.к. ∆АВС равнобедренный). ВО:ОН=5:4 Примем коэффициент отношения ВО:ОН равным а. Проведем радиус ОК в точку касания. Прямоугольные треугольники ВНС и ВКО имеют общий угол В, ⇒ они подобны. Из отношения катета и гипотенузы 4:5 треугольник - египетский ⇒ в ∆ ВОК катет ВК=. ( то же и по т. Пифагора ) . Из подобия следует отношение ВН:ВК=СН:ОК, т.е. 9а:3а=4:4а, откуда а=1/3. ВК=1. ВН=9•1/3=3. СК=СН (отрезки касательных из одной точки). Тогда ВС=АВ=ВК+КС=5.

По т.синусов 2R=AB:sin C ⇒ 2R=АВ:(ВН/ВС) ⇒ R=5:(3/5):2=25/6=4¹/₆ (ед. длины) ------- Тот же ответ получим, если найдем радиус описанной окружности по формуле R=abc/4S


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос