Вопрос задан 15.02.2021 в 08:16. Предмет Геометрия. Спрашивает Котов Алексей.

Найти диагональ прямоугольного параллелепипеда,если. a=4м; b=5м;c=13 м

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Буланова Рано.
Обозначим вершины прямоугольного параллелепипеда ABCDEFGH, где прямоугольники ABCD и EFGH - противоположные грани параллелепипеда, а вершины перечислены в порядке обхода по часовой стрелке. При этом отрезок AE является ребром параллелепипеда.
Пусть AB=5, AD=13 и AE=4.

Проведем диагональ AC в прямоугольнике ABCD.
Имеем 2 равных прямоугольных треугольника: ABC и ADC. Т.к. ABCD - прямоугольник, то сторона BC равна стороне AD, а сторона AB равна стороне CD.
По теореме Пифагора квадрат гипотенузы (AC) равен сумме квадратов катетов (AD и BC или AB и CD). Т.е. AC² = AB²+AD².
Рассмотрим теперь треугольник ACG. Сторона CG перпендикулярно плоскости ABCD, т.к. является ребром прямоугольного параллелепипеда. Значит, CG перпендикулярна любой прямой в плоскости ABCD, в частности, прямой AC. Значит, угол ACG треугольника ACG является прямым, т.е. треугольник ACG - прямоугольный с катетами AC и CG и гипотенузой AG, которая является диагональю прямоугольного параллелепипеда.
Отсюда, по теореме Пифагора, AG² = AC²+CG².

Длина ребра CG равна длине ребра AE. Значит, AG² = AC²+AE². Подставляя вместо AC² найденное раньше выражение AB²+AD², получаем, что AG² = AB²+AD²+AE² = 5²+13²+4² = 25+169+16 = 210. Значит, длина диагонали прямоугольного параллелепипеда со сторонами 4, 5 и 13 равна √210.



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения диагонали прямоугольного параллелепипеда, заданного его сторонами a, b и c, можно использовать теорему Пифагора. Диагональ (d) является гипотенузой прямоугольного треугольника, а стороны a, b и c являются катетами этого треугольника.

Таким образом, мы можем использовать следующую формулу для нахождения диагонали:

d = √(a² + b² + c²)

Подставляя значения a = 4м, b = 5м и c = 13м в эту формулу, получаем:

d = √(4² + 5² + 13²) = √(16 + 25 + 169) = √(210) ≈ 14.49 м

Таким образом, диагональ прямоугольного параллелепипеда составляет примерно 14.49 метра.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос