
Вопрос задан 01.11.2020 в 18:25.
Предмет Геометрия.
Спрашивает Уваров Виталя.
Докажите, что прямая x+y=5 является касательной к окружности , и найдите координаты точки касания.



Ответы на вопрос

Отвечает Смирнов Никита.
Для того, чтобы определить количество общих точек прямой X+Y=5 и окружности (X-3)²+(Y+2)²=8, необходимо решить систему из этих двух уравнений. Из первого уравнения выразим Y=5-X и подставим это значение в уравнение окружности:
(X-3)²+(7-X)²=8 или X²-6x+9+49-14X+X²-8=0. => X²-10X+25=0 Дискриминант этого уравнения D=√(100-4*25)=0, следовательно, данная нам прямая и окружность имеют ТОЛЬКО ОДНУ общую точку. Значит прямая является касательной к данной окружности в точке С(5;0) что и требовалось доказать.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili