Вопрос задан 05.01.2020 в 07:27. Предмет Геометрия. Спрашивает Степанов Саша.

Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F

соответственно. Найдите длину отрезка EF если AD=35 BC=21. CF:DF=5:2
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тепляшин Ваня.
Сделаем рисунок.
Соединим А и С.
Точку пересечения АC и ЕF отметим О.
Треугольники АСD и OCF подобны по первому признаку подобия, т.к. углы при секущей СD  и параллельных ЕF  равны как соответственные.
Пусть коэффициент отношения отрезков СD и FD равен х.
Тогда СD=7х
АD:ОF=7:5
35:ОF=7:57=25
Аналогично углы при параллельных АD и ЕF  и секущей АС  равны.
Из  подобия треугольников АВС и АЕО
ВС:ЕО=7:2
ЕО=6
ЕF=EO+OF=25+6=31
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос