Вопрос задан 30.05.2019 в 11:37. Предмет Геометрия. Спрашивает Харисов Данил.

Диагональ сечения цилиндра, параллельного оси, наклонена к плоскости основания под углом 30°.

Найдите площадь сечения, если радиус цилиндра равен 6 см, а хорда, по которой плоскость сечения пересекает основание, стягивает дугу в 60°.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Александрова Виктория.
Сечение цилиндра плоскостью - прямоугольник со сторонами: а=Н -высота цилиндра, b=m - хорда, угол α=30° - угол между диагональю сечения и плоскостью основания (хордой m)
рассмотрим треугольник, образованный радиусами основания цилиндра и хордой m.
хорда m стягивает дугу 60°, ⇒ центральный угол, образованный радиусами β=60°. треугольник равносторонний. m=R=6 см
прямоугольный треугольник: катет - высота цилиндра Н, катет хорда m=6 см, угол α=30°.
tgα=H/m. tg30°=H/6. H=6*√3/3. H=2√3 см
S=m*H, S=6*2√3
S сечения=12√3 см²
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос