Вопрос задан 08.02.2019 в 17:30. Предмет Геометрия. Спрашивает Маковеев Ваня.

В трапеции ABCD с основаниями AD и ВС углы при вершинах трапеции В и С 115° и 155° соответственно.

Найдите радиус окружности, проходящей через точки А и В. и касающейся прямой CD, если известно, что AB=14, BC=10.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сизов Максим.
Углы В и С равны соответственно 115° и 155° (дано). Значит углы А и D трапеции равны соответственно 180°-115°=65° и 180°-155°=25°.
То есть углы при основании трапеции в сумме равны 65°+25°=90°.
Продлим стороны АВ и DC трапеции до их пересечения в точке Е.
Тогда треугольники АЕD и подобный ему ВЕС (ВС параллельна AD) - прямоугольные, так как <Е=90° (180°-90°).
В прямоугольном треугольнике ВЕС катет ВЕ=ВС*Cos65° (так как <CBE=<DAE). По таблице Cos65° ≈ 0,423. Тогда ВЕ=4,2.
Проведем перпендикуляр ОК к стороне АВ трапеции. Это серединный перпендикуляр, так как О - центр окружности, а АВ - ее хорда. КВ=АВ/2=7.
Итак, фигура ОКЕР - прямоугольник (ОР - радиус в точку касания, ОК - серединный перпендикуляр, а <КЕР=90°).
Искомый радиус ОР равен стороне КЕ=КВ+ВЕ = 7+4,2=11,2.
Ответ: искомый радиус окружности равен 11,2.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос