Вопрос задан 31.01.2019 в 04:20. Предмет Геометрия. Спрашивает Мурадян Арсен.

В треугольнике АВС стороны АВ=4см, ВС=5см, ВD-биссектриса. Найдите отношение площади треугольника

АВD к площади треугольника АВС.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куренко Нина.
Напрямую по теореме: площади треугольников, имеющих равные углы относятся как произведения сторон, заключающих эти углы
Пусть площадь треугольника АВD= С₁
площадь треугольника СВД=С₂
Тогда, по теореме: С₁/С₂= (АВ·ВД)/ВД·ВС)=АВ/ВС=4/5
т.е. С₁ =4 части
     С₂=5 частей
Площадь треугольника АВС=С₁+С₂=9 частей
значит
отношение площади треугольника АВD к площади треугольника АВС.=4/9
Ответ 4/9

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос