
Вопрос задан 20.12.2018 в 11:39.
Предмет Геометрия.
Спрашивает Ладно Стефания.
Площадь треугольника ABC равна 6. На стороне AB выбрана точка M так, что AM:BM= 2:3. На стороне AC-
точка N так, что AN:NC=5:3. Точка P- точка пересечения прямых CM и BN - отстоит от прямой AB на расстоянии 1,5. Найти длину стороны AB.

Ответы на вопрос

Отвечает Тищенко Артём.
По теореме Чевы получаем:
CO/OB* BM/AM*AN/NC= 1
отудого CO/OB=2/5
Проведем параллельно стороне АВ отрезок CL, Получим пару подобных треугольников:
1)COL ~ AOB.
2)CLP ~ APM.
Из подобия треугольник АОВ~COB получаем CL/AB=CO/OB =2/5 => CL=2AB/5
Из подобия треугольников CLP~APM получаем CP/PM=CL/AM=1 => CP=PM
У нас высота CH параллельна PG которая равна 1,5см или 3/2 (по условию).
Значит треугольники CHM~PGM так же подобны, следовательно:
PM/CM=PG/CH
3/2 / 1/2 = CH
3 =CH
Площадь треугольника АВС , вычисляеться по формуле S=0.5*a*H.
H=3, S=6
S= 3*5y/2=6
15y=12
y=4/5
AB=4/5*5 = 4 см


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili