
Вопрос задан 22.06.2018 в 00:04.
Предмет Геометрия.
Спрашивает Турланов Мейрхан.
Помогите пожалуйста. Даны вершины треугольника А ( 1; 1) В ( 4; 1 ) С ( 4; 5 ). Вычислите косинусы
его углов

Ответы на вопрос

Отвечает Шиморина Лилечка.
Найдем координаты и модули векторов.
АВ{(4-1);1-1)} или АВ{3;0}, |AB|= √(3²+0) = 3.
ВС{(4-4);5-1)} или ВС{(0;4)}, |ВС|= √(0+4²) = 4.
АС{(4-1);5-1)} или АС{(3;4)}, |АС|= √(3²+4²) =5.
Формула косинуса угла между вкуторами 1 и 2:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае угол между векторами АВ и ВС:
cos(<ABC)=(3*0+0*4)/[√(x1²+y1²)*√(x2²+y2²)]=0. Угол 90°.
угол между векторами АВ и АС:
cos(<BAC)=(3*3+0*4)/(3*5)=3/5. Угол ≈53°.
угол между векторами ВС и АС:
cos(<ACB)=(0*3+4*4)/(4*5)=4/5 Угол ≈37°.
Ответ: cosA=3/5, cosB=0, cosC=4/5.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili