Вопрос задан 01.05.2023 в 18:00. Предмет Геометрия. Спрашивает Ерофеев Максим.

Сколько плоскостей можно провести через 4 точки так, чтобы 3 из них лежали в одной плоскости, если

никакие 3 из 4 точек не лежат на одной прямой?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Адик Дмитрий.

Через три точки можно провести плоскость и при том только одну. Хначит нам надо найти число сочетаний из 4 по 3 по известной формуле: 4!/((4-3)!*3! = 4. Но если эта формула нам не известна, то найти количество плоскостей можно простым перебором: пусть нам даны четыре точки: А,В,С и D. Тогда плоскости:

АВС, АВD, ADC и BCD (любые другие комбинации точек будут повторять уже имеющиеся, изменится лиш порядок следования букв в обозначениях плоскостей, например ВСА и АВС, а это одна и та же плоскость.

Получившаяся фигура - тетраэдр. У него 4 вершины (точки) и 4 грани (плоскости).

Ответ: 4.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос