Вопрос задан 05.05.2019 в 01:24. Предмет Химия. Спрашивает Винская Настя.

Вычислите объем хлора , необходимого для получения 89.6 л хлороводорода (н.у) Полученный

хлороводород растворили в воде объемом 854 мл. Вычислите массовую долюHCl в полученном растворе соляной кислоты!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мулахметов Радик.
H2 + CL2 --->  2HCL
     44,8=X------------89,6
       22,4---------44,8

89,6 / 22,4 = 4 MOL 
4 * 36,5 = 146 GR HCL
854 + 146 = 1000 rastvor 
 w% =  146  / 1000 = 14,6 % 
:) 
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To calculate the volume of chlorine required to obtain 89.6 L of hydrogen chloride (at standard conditions), we need to use the stoichiometry of the reaction between chlorine and hydrogen to determine the mole ratio.

The balanced chemical equation for the reaction between chlorine (Cl2) and hydrogen (H2) to form hydrogen chloride (HCl) is:

Cl2 + H2 → 2HCl

From the equation, we can see that 1 mole of chlorine reacts with 1 mole of hydrogen to produce 2 moles of hydrogen chloride.

To find the number of moles of hydrogen chloride, we can use the ideal gas law equation:

PV = nRT

Where: P = pressure (at standard conditions, it is 1 atm) V = volume of the gas (89.6 L) n = number of moles of the gas R = ideal gas constant (0.0821 L·atm/(mol·K)) T = temperature (at standard conditions, it is 273 K)

Rearranging the equation to solve for n, we have:

n = PV / RT

Substituting the given values, we get:

n = (1 atm) * (89.6 L) / (0.0821 L·atm/(mol·K) * 273 K)

Calculating this expression gives us the number of moles of hydrogen chloride.

Now, to find the volume of chlorine required, we use the mole ratio from the balanced equation. Since 1 mole of chlorine reacts with 2 moles of hydrogen chloride, we can set up the following proportion:

1 mole Cl2 / 2 moles HCl = x moles Cl2 / n moles HCl

Simplifying the proportion, we find:

x = (1 mole Cl2 / 2 moles HCl) * n moles HCl

Substituting the value of n that we calculated earlier, we can find the number of moles of chlorine required.

Finally, to convert the number of moles of chlorine to volume, we use the ideal gas law equation again:

PV = nRT

Where: P = pressure (at standard conditions, it is 1 atm) V = volume of the gas (unknown) n = number of moles of the gas (calculated earlier) R = ideal gas constant (0.0821 L·atm/(mol·K)) T = temperature (at standard conditions, it is 273 K)

Rearranging the equation to solve for V, we have:

V = nRT / P

Substituting the values, we can calculate the volume of chlorine required.

Now, let's move on to calculating the mass fraction of HCl in the resulting solution of hydrochloric acid.

To find the mass fraction, we need to know the mass of HCl in the solution and the total mass of the solution.

First, let's calculate the mass of HCl in the solution. We know the volume of the solution is 854 mL, which is equivalent to 0.854 L. We can use the ideal gas law equation to find the number of moles of HCl in the solution:

n = PV / RT

Where: P = pressure (at standard conditions, it is 1 atm) V = volume of the gas (0.854 L) n = number of moles of the gas (HCl) R = ideal gas constant (0.0821 L·atm/(mol·K)) T = temperature (at standard conditions, it is 273 K)

Substituting the values, we can calculate the number of moles of HCl.

To find the mass of HCl, we multiply the number of moles by the molar mass of HCl, which is approximately 36.46 g/mol.

Next, we need to calculate the total mass of the solution. This includes the mass of the water and the mass of HCl. The density of water is approximately 1 g/mL, so the mass of the water can be calculated by multiplying the volume of water (854 mL) by the density of water (1 g/mL).

Finally, we can calculate the mass fraction of HCl by dividing the mass of HCl by the total mass of the solution and multiplying by 100 to express it as a percentage.

Please note that the calculations provided above are based on the given information and assumptions. It is always important to double-check the calculations and consider any additional factors that may affect the results.

Let me know if there's anything else I can help you with!

0 0

Топ вопросов за вчера в категории Химия

Последние заданные вопросы в категории Химия

Задать вопрос