
Представь, что ты летишь на самолёте. Пилот объявил, что давление за бортом 260 мм рт. ст. На какой
высоте находится самолёт?

Ответы на вопрос

Ответ:
5250м.
Объяснение:
При подъеме на каждые 10,5 метров атмосферное давление уменьшается на 1 мм рт. ст. Считаем... Нормальное давление 760мм р.с.
760-260=500
500•10.5=5250м.



Calculation of Altitude based on Atmospheric Pressure
To determine the altitude at which the plane is flying, we can use the relationship between atmospheric pressure and altitude. As the altitude increases, the atmospheric pressure decreases. This relationship can be described by the barometric formula, which states that the pressure decreases exponentially with increasing altitude.
The given atmospheric pressure is 260 mmHg (millimeters of mercury). However, it is important to note that atmospheric pressure is usually measured in units of millibars (mb) or hectopascals (hPa) in aviation. To convert mmHg to hPa, we can use the conversion factor of 1 mmHg = 1.33322 hPa.
Converting the given atmospheric pressure of 260 mmHg to hPa, we get:
260 mmHg * 1.33322 hPa/mmHg = 346.1212 hPa
Now, let's determine the altitude at which the plane is flying using the barometric formula. The barometric formula relates the pressure at a given altitude to the pressure at sea level. It can be expressed as:
P = P0 * (1 - (L * h) / T0)^(g / (R * L))
Where: - P is the pressure at the given altitude - P0 is the pressure at sea level (standard pressure) - L is the temperature lapse rate - h is the altitude - T0 is the standard temperature at sea level - g is the acceleration due to gravity - R is the gas constant for air
In this case, we are given the pressure at the given altitude (P) as 346.1212 hPa. The standard pressure at sea level (P0) is 1013.25 hPa. The temperature lapse rate (L) is approximately -0.0065 K/m. The standard temperature at sea level (T0) is 288.15 K. The acceleration due to gravity (g) is approximately 9.80665 m/s^2. The gas constant for air (R) is approximately 8.314 J/(mol·K).
Using these values, we can rearrange the barometric formula to solve for the altitude (h):
h = (T0 / L) * (1 - (P / P0)^((R * L) / g))
Substituting the given values, we get:
h = (288.15 K / -0.0065 K/m) * (1 - (346.1212 hPa / 1013.25 hPa)^((8.314 J/(mol·K) * -0.0065 K/m) / 9.80665 m/s^2))
Calculating this expression will give us the altitude at which the plane is flying.
Please note that the above calculation assumes standard atmospheric conditions and may not be accurate in all cases. Additionally, the given atmospheric pressure of 260 mmHg is an approximation and may not reflect the actual pressure at the time of the flight.
Let me calculate the altitude for you.


Похожие вопросы
Топ вопросов за вчера в категории География
Последние заданные вопросы в категории География
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili