
Представь, что ты летишь на самолёте. Пилот объявил, что давление за бортом 520 мм рт. ст. На какой
высоте находится самолёт?

Ответы на вопрос

Ответ:
3465м
Объяснение:
при подъёме на каждые 10,5 м атмосферное давление уменьшается на 1 мм рт. сп считываем нормальное давление 760мм ртст
760-430=330
330×10,5=3465м



Calculation of Altitude based on Atmospheric Pressure
To determine the altitude at which the airplane is flying, we can use the relationship between atmospheric pressure and altitude. As the altitude increases, the atmospheric pressure decreases. This relationship can be described using the barometric formula.
The barometric formula states that the atmospheric pressure decreases exponentially with increasing altitude. It can be expressed as:
P = P0 * (1 - (L * h) / T0) ^ (g / (R * L))
Where: - P is the atmospheric pressure at the given altitude - P0 is the atmospheric pressure at sea level (standard pressure) - L is the temperature lapse rate (change in temperature with altitude) - h is the altitude - T0 is the standard temperature at sea level - g is the acceleration due to gravity - R is the gas constant for air
In this case, the pilot has announced that the pressure outside the aircraft is 520 mmHg (millimeters of mercury). We can convert this pressure to a standard unit of measurement, such as pascals (Pa), before using the barometric formula.
Converting 520 mmHg to pascals: 1 mmHg = 133.322 Pa 520 mmHg * 133.322 Pa/mmHg = 69,259.04 Pa
Now, we can use the barometric formula to calculate the altitude.
Calculation:
Let's assume the standard pressure at sea level (P0) is 101,325 Pa, the standard temperature at sea level (T0) is 288.15 K, and the temperature lapse rate (L) is -0.0065 K/m.
Using the given pressure of 69,259.04 Pa and the barometric formula, we can solve for the altitude (h).
69,259.04 = 101,325 * (1 - (-0.0065 * h) / 288.15) ^ (9.8 / (287.05 * -0.0065))
Simplifying the equation, we get:
(1 - (-0.0065 * h) / 288.15) ^ (-35.163) = 0.6829
Taking the natural logarithm of both sides, we have:
-35.163 * ln(1 - (-0.0065 * h) / 288.15) = ln(0.6829)
Solving for h, we find:
h ≈ 11,000 meters
Therefore, the airplane is flying at an altitude of approximately 11,000 meters.
Please note that this calculation assumes standard atmospheric conditions and may not account for variations due to weather or other factors.


Похожие вопросы
Топ вопросов за вчера в категории География
Последние заданные вопросы в категории География
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili