Вопрос задан 09.01.2020 в 11:58. Предмет Информатика. Спрашивает Лютый Захар.

Помогите! Двоичная и десятичная система счисления321

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рымар Иван.
321 в десятичной = 101000001 в двоичной
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Binary and Decimal Number Systems

The binary and decimal number systems are two commonly used systems for representing numbers.

Decimal System: The decimal system, also known as the base-10 system, is the number system most familiar to us. It uses ten digits (0-9) to represent numbers. Each digit's position in a decimal number represents a power of 10. For example, in the number 321, the digit 3 represents 3 hundreds (10^2), the digit 2 represents 2 tens (10^1), and the digit 1 represents 1 unit (10^0).

Binary System: The binary system, also known as the base-2 system, is used in computer systems and digital electronics. It uses only two digits (0 and 1) to represent numbers. Each digit's position in a binary number represents a power of 2. For example, in the binary number 1010, the leftmost digit represents 1 eight (2^3), the second digit represents 0 fours (2^2), the third digit represents 1 two (2^1), and the rightmost digit represents 0 ones (2^0).

To convert a decimal number to binary, you can use the process of repeated division by 2. Here's an example:

1. Start with the decimal number 321. 2. Divide 321 by 2, resulting in a quotient of 160 and a remainder of 1. 3. Divide 160 by 2, resulting in a quotient of 80 and a remainder of 0. 4. Divide 80 by 2, resulting in a quotient of 40 and a remainder of 0. 5. Divide 40 by 2, resulting in a quotient of 20 and a remainder of 0. 6. Divide 20 by 2, resulting in a quotient of 10 and a remainder of 0. 7. Divide 10 by 2, resulting in a quotient of 5 and a remainder of 0. 8. Divide 5 by 2, resulting in a quotient of 2 and a remainder of 1. 9. Divide 2 by 2, resulting in a quotient of 1 and a remainder of 0. 10. Divide 1 by 2, resulting in a quotient of 0 and a remainder of 1.

Reading the remainders from bottom to top gives us the binary representation of 321, which is 101000001.

To convert a binary number to decimal, you can use the process of multiplying each digit by the corresponding power of 2 and summing the results. Here's an example:

1. Start with the binary number 101000001. 2. Multiply the leftmost digit (1) by 2^8, resulting in 256. 3. Multiply the second digit (0) by 2^7, resulting in 0. 4. Multiply the third digit (1) by 2^6, resulting in 64. 5. Multiply the fourth digit (0) by 2^5, resulting in 0. 6. Multiply the fifth digit (0) by 2^4, resulting in 0. 7. Multiply the sixth digit (0) by 2^3, resulting in 0. 8. Multiply the seventh digit (0) by 2^2, resulting in 0. 9. Multiply the eighth digit (0) by 2^1, resulting in 0. 10. Multiply the rightmost digit (1) by 2^0, resulting in 1.

Summing the results gives us the decimal representation of 101000001, which is 321.

I hope this explanation helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос