Вопрос задан 24.02.2019 в 07:58. Предмет Информатика. Спрашивает Леонтьева Верочка.

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим

образом. 1) Строится двоичная запись числа N. 2) К этой записи дописывается справа бит чётности: 0, если в двоичном коде числа N было чётное число единиц, и 1, если нечётное. 3) К полученному результату дописывается ещё один бит чётности. Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число R, большее 180, которое может быть получено в результате работы этого алгоритма. В ответе это число запишите в десятичной системе
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крашенинников Владимир.
1. Установим допустимые сочетания двух последних битов (битов четности).
Если в N было четное количество единиц, то дописывается ноль. Поскольку ноль не меняет количества единиц, второй бит четности тоже будет нулевым. Правило №1: Если в двоичном представлении четное количество единиц, то дописывается 00.
Если в N было нечетное количество единиц, то дописывается единица. Это меняет количество единиц на четное, поэтому второй бит четности будет нулевым. Правило №2: Если в двоичном представлении нечетное количество единиц, то дописывается 10.

Первое число R, большее 180, это 181. Переведем его в двоичную систему счисления.
181₁₀ = 10110101
Мы видим, что оба наших правила нарушены, т.е. число 181 не подходит в качестве R.
Представление N (101101) содержит четное количество единиц, а для четного количества действует Правило №1 и мы должны записать 00, что уменьшит наше минимально возможное число R=181₁₀
Но если мы в числе N поменяем местами два правых бита, получим число 101110, которое больше чем 101101 и теперь по все тому же Правилу №1 мы получаем право приписать два нолика и получить R=10111000₂ = 184₁₀
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нужно последовательно выполнить описанные шаги алгоритма для числа N, которое больше 180.

1) Предположим, что N = 181. Его двоичная запись будет 101

0 0

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос