
Решение квадратичной функции (ax^2 + bx + c = 0) на Паскале ABC через дискриминант


Ответы на вопрос




Solving a Quadratic Function Using the Discriminant in Pascal's ABC
To solve a quadratic function of the form \(ax^2 + bx + c = 0\) in Pascal's ABC using the discriminant, we can follow these steps:
1. Calculate the Discriminant (D): The discriminant, denoted as \(D\), is calculated using the formula: \[D = b^2 - 4ac\]
This discriminant is a key factor in determining the nature of the roots of the quadratic equation.
2. Determine the Nature of the Roots: - If \(D > 0\), the quadratic equation has two distinct real roots. - If \(D = 0\), the quadratic equation has two equal real roots. - If \(D < 0\), the quadratic equation has two complex roots.
3. Calculate the Roots: - If the discriminant is positive, the roots can be calculated using the quadratic formula: \[x = \frac{{-b \pm \sqrt{D}}}{{2a}}\] where \(D\) is the discriminant.
- If the discriminant is zero, the roots are real and equal, and can be calculated using: \[x = \frac{{-b}}{{2a}}\]
- If the discriminant is negative, the roots are complex and can be expressed in the form: \[x = \frac{{-b \pm i\sqrt{|D|}}}{{2a}}\]
Example Calculation Using the Given Coefficients
Let's consider an example with the coefficients provided in the search snippet:
Given coefficients: \(a = 1\), \(b = -7\), \(c = -10\)
1. Calculate the Discriminant: \[D = (-7)^2 - 4(1)(-10) = 49 + 40 = 89\]
2. Determine the Nature of the Roots: Since \(D = 89 > 0\), the quadratic equation has two distinct real roots.
3. Calculate the Roots: Using the quadratic formula: \[x = \frac{{-(-7) \pm \sqrt{89}}}{{2(1)}}\] \[x = \frac{{7 \pm \sqrt{89}}}{{2}}\]
Therefore, the roots of the quadratic equation \(x^2 - 7x - 10 = 0\) are: \[x_1 = \frac{{7 + \sqrt{89}}}{{2}}\] \[x_2 = \frac{{7 - \sqrt{89}}}{{2}}\]
This demonstrates how to solve a quadratic function using the discriminant in Pascal's ABC.


Топ вопросов за вчера в категории Информатика
Последние заданные вопросы в категории Информатика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili