
В шкатулке хранится разноцветный бисер (или бусины). Все бусины имеют одинаковую форму, размер и
вес. Бусины могут быть одного из N различных цветов. В шкатулке много бусин каждого цвета. Требуется определить минимальное число бусин, которые можно не глядя вытащить из шкатулки так, чтобы среди них гарантированно были две бусины одного цвета. 1 ≤ N ≤ 10^9 c++

Ответы на вопрос

Ответ:
#include <iostream>
int main()
{
unsigned long long N;
std::cin >> N;
std::cout << N+1;
}
Объяснение:



Problem Analysis
We are given a box containing beads of different colors. All the beads have the same shape, size, and weight. The beads can be of one of N different colors. We need to determine the minimum number of beads that can be blindly drawn from the box to guarantee that there are at least two beads of the same color.
Solution
To solve this problem, we can use the concept of the pigeonhole principle. The pigeonhole principle states that if you have more pigeons than pigeonholes, then at least one pigeonhole must contain more than one pigeon.
In this case, the colors of the beads represent the pigeonholes, and the beads themselves represent the pigeons. We want to find the minimum number of beads that guarantees that at least two beads of the same color are drawn.
To solve this, we can assume the worst-case scenario, where we draw one bead of each color before drawing a bead of the same color again. In this case, we would need N + 1 beads to guarantee that we have at least two beads of the same color. This is because if we have N beads, we could have one bead of each color, and we would need one more bead to guarantee that we have at least two beads of the same color.
Therefore, the minimum number of beads that can be blindly drawn from the box to guarantee that there are at least two beads of the same color is N + 1.
Answer
The minimum number of beads that can be blindly drawn from the box to guarantee that there are at least two beads of the same color is N + 1, where N is the number of different colors of beads in the box.
Example
Let's consider an example to illustrate this. Suppose we have a box with 5 different colors of beads (N = 5). To guarantee that we have at least two beads of the same color, we would need to draw at least 6 beads from the box. This is because if we draw 5 beads, we could have one bead of each color, and we would need one more bead to guarantee that we have at least two beads of the same color.
Therefore, in this example, the minimum number of beads that can be blindly drawn from the box to guarantee that there are at least two beads of the same color is 6.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Информатика







Последние заданные вопросы в категории Информатика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili