Вопрос задан 28.09.2023 в 13:24. Предмет Информатика. Спрашивает Князева Кристина.

СДЕЛАТЬ БЛОК СХЕМУ.ЦИКЛ ПОКА Найти сумму членов чисел последовательности длины N

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шигорина Маша.

Ответ:

Термин «алгоритм», впервые употребленный в современном значении. Лейбницем (1646–1716), является латинизированной формой имени великого персидского математика Мухаммеда бен Муссы аль-Хорезми (ок. 783 – ок. 850). Его книга «Об индийском счете» в XII в. была переведена на латинский язык и пользовалась широкой популярностью не одно столетие. Имя автора европейцы произносили как Алгоритми (Algorithmi), и со временем так стали называть в Европе всю систему десятичной арифметики.

Научное определение алгоритма дал А. Чёрч в 1930 году. В наше время понятие алгоритма является одним из основополагающих понятий вычислительной математики и информатики.

Алгоритм — это точное и полное описание последовательности действий над заданными объектами, позволяющее получить конечный результат.

Можно сказать, что алгоритм решения какой-либо задачи — это последовательность шагов реализации (или нахождения) этого решения, а процесс построения алгоритма (алгоритмизация) — разложение задачи на элементарные действия или операции.

Область математики, известная как теория алгоритмов, посвящена исследованию свойств, способов записи, области применения различных алгоритмов, а также созданию новых алгоритмов. Теория алгоритмов находит широкое применение в различных областях деятельности человека — в технике, производстве, медицине, образовании и т. д. Появление компьютера позволило решать чрезвычайно сложные, трудоемкие задачи.

Определение алгоритма для применения в области информатики нуждается в некотором уточнении. Во-первых, решение задач в информатике всегда связано с преобразованием информации, а значит, исходными данными и результатом работы алгоритма должна быть информация. Это может быть представлено в виде схемы.

Во-вторых, алгоритмы в информатике предназначены для реализации в виде компьютерных программ или для создания некоторой компьютерной технологии. Для выполнения алгоритма требуется конечный объем оперативной памяти и конечное время.

Основные требования, предъявляемые к алгоритмам:

Дискретность (прерывность): алгоритм должен представлять решение задачи в виде последовательности простых (или ранее определенных) этапов (шагов). Каждый шаг алгоритма формулируется в виде инструкций (команд).

Определенность (детерминированность; лат. determinate — определенность, точность): шаги (операции) алгоритма должны допускать однозначную трактовку и быть понятными для исполнителя алгоритма. Это свойство указывает на то, что любое действие в алгоритме должно быть строго определено и описано для каждого случая.

Массовость: алгоритм должен давать решение не только для конкретного набора значений, а для целого класса задач, который определяется диапазоном возможных исходных данных (область применимости алгоритма). Свойство массовости подразумевает использование переменных в качестве исходных данных алгоритма.

Результативность: алгоритм должен давать конкретный результат, т. е. должны быть рассмотрены все возможные ситуации и для каждой из них получен результат. Под результатом может пониматься и сообщение о том, что задача решения не имеет.

Конечность: количество шагов алгоритма должно быть конечным.

Эффективность: количество шагов и сами шаги алгоритма должны быть такими, чтобы решение могло быть найдено за конечное и, более того, приемлемое время.

Для оценки и сравнения алгоритмов существует много критериев. Чаще всего анализ алгоритма (или, как говорят, анализ сложности алгоритма) состоит в оценке временных затрат на решение задачи в зависимости от объема исходных данных. Используются также термины «временная сложность», «трудоемкость» алгоритма. Фактически эта оценка сводится к подсчету количества основных операций в алгоритме, поскольку каждая из них выполняется за заранее известное конечное время. Кроме временной сложности, должна оцениваться также емкостная сложность, т. е. увеличение затрат памяти в зависимости от размера исходных данных. Оценка сложности дает количественный критерий для сравнения алгоритмов, предназначенных для решения одной и той же задачи. Оптимальным (наилучшим) считается алгоритм, который невозможно значительно улучшить в плане временных и емкостных затрат.

Анализом сложности алгоритмов, исследованием классов задач, решаемых с помощью алгоритмов той или иной сложности, и многими другими теоретическими вопросами занимается специальная область информатики.

Алгоритмы можно представлять как некоторые структуры, состоящие из отдельных базовых элементов.

Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур:

следование — образуется из последовательности действий, следующих одно за другим;

ветвление (развилка) — обеспечивает в зависимости от результатов проверки условия (ДА или НЕТ) выбор одного из альтернативных путей алгоритма;

цикл — обеспечивает многократное выполнение некоторой совокупности действий, которая называется телом цикла.

Для описания алгоритмов наиболее распространены следующие методы (языки):

Обычный язык. Изложение алгоритма ведется на обычном языке с разделением на последовательные ш

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для создания блок-схемы, описывающей цикл для вычисления суммы членов числовой последовательности длины N, вы можете использовать следующий общий алгоритм:

  1. Начните с инициализации переменных:

    • Сумма (Sum) = 0
    • Счетчик (i) = 1 (начальное значение)
  2. Начните цикл, который будет выполняться, пока счетчик (i) не превысит значение N.

  3. Внутри цикла:

    • Считайте очередное число из последовательности (например, с клавиатуры или из массива).
    • Прибавьте это число к сумме (Sum).
    • Увеличьте счетчик (i) на 1.
  4. После завершения цикла выведите значение суммы (Sum) на экран или в другой удобный способ.

  5. Завершите выполнение программы.

Вот блок-схема, которая может представить этот алгоритм:

lua
+---------------------+ | Начало программы | +---------------------+ | v +---------------------+ | Инициализация | | Sum = 0 | | i = 1 | +---------------------+ | v +---------------------+ | Пока i <= N | | +-----------------+ | | Ввод числа | | | из последовательности | | | | | | Sum = Sum + число | | | | | | i = i + 1 | | +-----------------+ +---------------------+ | v +---------------------+ | Вывод суммы | | (Sum) | +---------------------+ | v +---------------------+ | Конец программы | +---------------------+

Пожалуйста, обратите внимание, что вы должны адаптировать этот общий алгоритм и блок-схему под вашу конкретную среду программирования и язык программирования.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос