Вопрос задан 17.06.2023 в 15:29. Предмет Информатика. Спрашивает Птушко Анютка.

Статья набранная на компьютере, содержит 6 страниц, на каждой странице 32 строки, в каждой строке

64 символа. Определите максимальное количество символов в алфавите, при которого была набрана статья, если известно, что её информационный объём равен 18 килобайт. ответ: 4096 Объясните , почему так получилось.
1 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дарбинян Роберт.

Ответ:

так получилось

Объяснение:

всего у тебя набрано (64*32*6) 12288 символов

Объем статьи = 18кб = (18*1024) 18432байт = (18432*8) 147456 бит

Следовательно, у тебя используется по (147456/12288) 12 бит на символ

Бит может принимать значение "0" или "1" (2 варианта).

Тогда у тебя 2*2*2*2*2*2*2*2*2*2*2*2 или  разных комбинаций нулей и единиц для записи одного символа. Это значит, что максимум символов в алфавите = кол-ву комбинаций, которыми эти символы можно закодировать, а =4096

1 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения максимального количества символов в алфавите, при котором была набрана статья, нужно знать информационный объем статьи и количество символов в каждой странице.

Информационный объем статьи равен 18 килобайтам, что составляет 18 * 1024 = 18432 байта.

Каждая страница содержит 32 строки, а каждая строка содержит 64 символа. Следовательно, каждая страница содержит 32 * 64 = 2048 символов.

Таким образом, общее количество символов на всех страницах составляет 6 * 2048 = 12288 символов.

Теперь мы можем выразить максимальное количество символов в алфавите, используя следующее уравнение:

18432 байта = количество символов * размер символа в байтах.

Поскольку размер символа не указан, давайте предположим, что он составляет 1 байт. Тогда количество символов будет равно 18432 символа.

Таким образом, максимальное количество символов в алфавите, при котором была набрана статья, составляет 18432 символа или 4096 символов в алфавите.

Причина, по которой так получилось, заключается в том, что каждый символ занимает определенное количество байтов в памяти компьютера. Информационный объем статьи равен количеству символов, умноженному на размер каждого символа в байтах. Таким образом, мы можем использовать это уравнение, чтобы найти максимальное количество символов в алфавите, при котором была набрана статья.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос