
√х-1 >-4√х-1 >4 √х-1 <4 √х-1 <-4 Хелп


Ответы на вопрос

Ответ:
білмим қай пәннен сабақ



The inequalities you've written are as follows:
- √x - 1 > -4
- -4√x - 1 > 4
- 4√x - 1 < 4
- 4√x - 1 < -4
Let's solve each of them step by step:
√x - 1 > -4 Add 1 to both sides: √x > -3
-4√x - 1 > 4 Add 1 to both sides: -4√x > 5 Divide both sides by -4. When you divide by a negative number, flip the inequality sign: √x < -5/4
4√x - 1 < 4 Add 1 to both sides: 4√x < 5 Divide both sides by 4: √x < 5/4
4√x - 1 < -4 Add 1 to both sides: 4√x < -3 Divide both sides by 4: √x < -3/4
Now, to find the valid solution, we need to consider the domain of the square root function. The square root of a real number must be non-negative. Therefore, the valid solutions are:
- √x > -3 (Since the square root is always non-negative, this is always true.)
- No valid solutions, as the square root of a real number is always non-negative, and it can't be less than -5/4.
- √x < 5/4 (This is valid within the domain of the square root.)
- No valid solutions, as the square root of a real number is always non-negative, and it can't be less than -3/4.
So, the valid solution is: √x > -3 and √x < 5/4
However, keep in mind that this solution only applies to the range of x values for which the square root function is defined. In this case, x must be greater than or equal to 0 because the square root of a negative number is not a real number.


Похожие вопросы

Последние заданные вопросы в категории МХК
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili