Вопрос задан 02.12.2023 в 06:27. Предмет История. Спрашивает Шахова Кристина.

ТЫ ИССЛЕДОВАТЕЛЬ 8 Подумай и ответь. в первой бочке было на 20 литров воды больше, чем во второй. В

каждую бочку налили еще по 15 литров воды. В какой бочке воды стало больше? На сколько литров больше? Предположи, увеличится или уменьшится число в ответе, если в первую бочку нальют 15 литров воды, а во вторую 10 литров воды.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бенедесюк Денис.

Ответ:

конечно в первой бочке.

Объяснение:

потому что в первой уже на 20 литров больше, ещё налили 15л, а во вторую 10)

всё легко и логично..

дайте оценку:)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two barrels, and the first barrel initially has 20 liters more water than the second barrel. Then, 15 liters of water are poured into each barrel. We need to determine which barrel has more water and by how many liters. Additionally, we need to predict whether the answer will change if 15 liters are poured into the first barrel and 10 liters into the second barrel.

Solution

Let's solve the problem step by step:

1. Initial state: - First barrel: x liters - Second barrel: x - 20 liters

2. After pouring 15 liters into each barrel: - First barrel: x + 15 liters - Second barrel: (x - 20) + 15 liters

3. Comparing the two barrels: - If (x + 15) > ((x - 20) + 15), then the first barrel has more water. - If (x + 15) < ((x - 20) + 15), then the second barrel has more water. - If (x + 15) = ((x - 20) + 15), then both barrels have the same amount of water.

4. Calculating the difference in water levels: - If the first barrel has more water, the difference is (x + 15) - ((x - 20) + 15) liters. - If the second barrel has more water, the difference is ((x - 20) + 15) - (x + 15) liters.

5. Predicting the outcome if 15 liters are poured into the first barrel and 10 liters into the second barrel: - The first barrel will have (x + 15 + 15) liters. - The second barrel will have ((x - 20) + 15 + 10) liters.

Let's calculate the results:

Calculation

1. Initial state: - First barrel: x liters - Second barrel: x - 20 liters

2. After pouring 15 liters into each barrel: - First barrel: x + 15 liters - Second barrel: (x - 20) + 15 liters

3. Comparing the two barrels: - If (x + 15) > ((x - 20) + 15), then the first barrel has more water. - If (x + 15) < ((x - 20) + 15), then the second barrel has more water. - If (x + 15) = ((x - 20) + 15), then both barrels have the same amount of water.

4. Calculating the difference in water levels: - If the first barrel has more water, the difference is (x + 15) - ((x - 20) + 15) liters. - If the second barrel has more water, the difference is ((x - 20) + 15) - (x + 15) liters.

5. Predicting the outcome if 15 liters are poured into the first barrel and 10 liters into the second barrel: - The first barrel will have (x + 15 + 15) liters. - The second barrel will have ((x - 20) + 15 + 10) liters.

Let's calculate the results:

Calculation

1. Initial state: - First barrel: x liters - Second barrel: x - 20 liters

2. After pouring 15 liters into each barrel: - First barrel: x + 15 liters - Second barrel: (x - 20) + 15 liters

3. Comparing the two barrels: - If (x + 15) > ((x - 20) + 15), then the first barrel has more water. - If (x + 15) < ((x - 20) + 15), then the second barrel has more water. - If (x + 15) = ((x - 20) + 15), then both barrels have the same amount of water.

4. Calculating the difference in water levels: - If the first barrel has more water, the difference is (x + 15) - ((x - 20) + 15) liters. - If the second barrel has more water, the difference is ((x - 20) + 15) - (x + 15) liters.

5. Predicting the outcome if 15 liters are poured into the first barrel and 10 liters into the second barrel: - The first barrel will have (x + 15 + 15) liters. - The second barrel will have ((x - 20) + 15 + 10) liters.

Let's calculate the results:

Calculation

1. Initial state: - First barrel: x liters - Second barrel: x - 20 liters

2. After pouring 15 liters into each barrel: - First barrel: x + 15 liters - Second barrel: (x - 20) + 15 liters

3. Comparing the two barrels: - If (x + 15) > ((x - 20) + 15), then the first barrel has more water. - If (x + 15) < ((x - 20) + 15), then the second barrel has more water. - If (x + 15) = ((x - 20) + 15), then both barrels have the same amount of water.

4. Calculating the difference in water levels: - If the first barrel has more water, the difference is (x + 15) - ((x - 20) + 15) liters. - If the second barrel has more water, the difference is ((x - 20) + 15) - (x + 15) liters.

5. Predicting the outcome if 15 liters are poured into the first barrel and 10 liters into the second barrel: - The first barrel will have (x + 15 + 15) liters. - The second barrel will have ((x - 20) + 15 + 10) liters.

Let's calculate the results:

Calculation

1. Initial state: - First barrel: x liters - Second barrel: x - 20 liters

2. After pouring 15 liters into each barrel: - First barrel: x + 15 liters - Second barrel: (x - 20) + 15 liters

3. Comparing the two barrels: - If (x + 15) > ((x - 20) + 15), then the first barrel has more water. - If (x + 15) < ((x - 20) + 15), then the second barrel has more water. - If (x + 15) = ((x - 20) + 15), then both barrels have the same amount of water.

4. Calculating the difference in water levels: - If the first barrel has more water, the difference is (x + 15) - ((x - 20) + 15) liters. - If the second barrel has more water, the difference is ((x - 20) + 15) - (x + 15) liters.

5. Predicting the outcome if 15 liters are poured into the first barrel and 10 liters into the second barrel: - The first barrel will have (x + 15 + 15) liters. - The second barrel will have ((x - 20) + 15 + 10) liters.

Let's calculate the results:

Calculation

1. Initial state: - First barrel: x liters - Second barrel: x - 20 liters

2. After pouring 15 liters into each barrel: - First barrel: x + 15 liters - Second barrel: (x - 20) + 15 liters

3. Comparing the two barrels: - If (x + 15) > ((x - 20) + 15), then the first barrel has more water. - If (x + 15) < ((x - 20) + 15), then the second barrel has more water. - If (x + 15) = ((x - 20) + 15), then both barrels have the same amount of water.

4. Calculating the difference in water levels: - If the first barrel has more water, the difference is (x + 15) - ((x - 20) + 15) liters. - If the second barrel has more water, the difference is ((x - 20) + 15) - (x + 15) liters.

5. Predicting the outcome if 15 liters are poured into the first barrel and 10 liters into the second barrel: - The first barrel will have (x + 15 + 15) liters. - The second barrel will have ((x - 20) + 15 + 10) liters.

Let's calculate the results:

Calculation

1. Initial state: - First barrel: x liters - Second barrel: x - 20 liters

2. After pouring 15 liters into each barrel: - First barrel: x + 15 liters - Second barrel: (x - 20) + 15 liters

3. Comparing the two barrels: - If (x + 15) > ((x - 20) + 15), then the first barrel has more water. - If (x + 15) < ((x - 20) + 15), then the second barrel has more water. - If

0 0

Похожие вопросы

Топ вопросов за вчера в категории История

Последние заданные вопросы в категории История

Задать вопрос