Вопрос задан 19.03.2019 в 23:09. Предмет Информатика. Спрашивает Кириченко Максим.

Для какого минимального натурального числа А, логическое выражение ¬(x делится на 39) → ((x делится

на 3) → ¬(x де- лится на A)). тождественно истинно (то есть принимает значение 1 при любом целом значении переменной х)? 3
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Васильева Кристина.
Пусть запись X║Y будет означать, что X делится на Y, а X∦Y - что X не делится на Y.

¬(X║39)→((x║3)→¬(X║A) = (X∦39)→((X∦3) ∨ (X∦A))=
X║39 ∨ X∦3 ∨ X∦A

При каком значении А такое выражение истинно, независимо от Х?
Понятно, что X∦3 не рассматривается, поскольку оно ложно для каждого третьего по порядку Х.
А вот выражение (X║39 ∨ X∦A) всегда истинно только если (X║39 ∨ X∦39), откуда следует, что А=39
0 0
Отвечает Смирнова Анастасия.
Д- делится
нд- не делится
Преобразуем выражение:
¬(x д 39) → ((x д 3) → ¬(x д A))=(x нд 39) → ((x д 3) →(x нд A))=
=(x нд 39)→((x нд 3)+(x нд А))=(x д 39)+(х нд 3)+(x нд A)
Теперь невооруженным глазом видно, что выражение будет тождественно истинно при А=39
0 0

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос