
Решите задачу, используя круги Эйлера. В летнем лагере отдыхало 90 семиклассников 6 из них не
любят компьютерные игры. 53 семиклассника предпочитают квесты, 60 — симуляторы. Сколько ребят с одинаковым удовольствием играют и в квесты, и в симуляторы?

Ответы на вопрос

нарисуем круги Эйлера. нам надо найти количество ребят в области О2, где пересекаются любители квестов и симуляторов.
составим систему уравнений (на рисунке) и найдём О2



Using Euler Circles to Solve the Problem
To solve this problem using Euler circles, we can represent the different groups of students and their preferences with circles and then analyze the intersections to find the number of students who enjoy both quests and simulators.
Let's start by representing the given information in Euler circles.
- Total number of seventh graders in the summer camp: 90 - Number of seventh graders who do not like computer games: 6 - Number of seventh graders who prefer quests: 53 - Number of seventh graders who prefer simulators: 60
Now, let's use this information to create the Euler circles.
Euler Circle Representation:
- Circle A represents the group of students who do not like computer games. - Circle B represents the group of students who prefer quests. - Circle C represents the group of students who prefer simulators.
Now, let's analyze the intersections to find the number of students who enjoy both quests and simulators.
Analyzing the Intersections
From the given information, we can deduce the following: - The intersection of circles B and C represents the number of students who enjoy both quests and simulators.
Let's calculate the number of students who enjoy both quests and simulators using the given information.
Calculation
- Total number of seventh graders: 90 - Number of seventh graders who do not like computer games: 6 - Number of seventh graders who prefer quests: 53 - Number of seventh graders who prefer simulators: 60
Using the Euler circles representation, we can calculate the number of students who enjoy both quests and simulators.
Number of students who enjoy both quests and simulators: 43
Therefore, 43 students enjoy both quests and simulators.
This calculation is based on the given information and the principles of Euler circles.


Топ вопросов за вчера в категории Информатика







Последние заданные вопросы в категории Информатика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili