Вопрос задан 30.07.2018 в 04:09. Предмет Информатика. Спрашивает Сачук Настя.

Перевести из десятичной системы счисления в двоичную:a). 216(10)б). 336(10)в). 741,125(10)г).

712,375(10)д). 184,14(10)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Скурихин Никита.

216 = 110110002

336 = 1010100002

=00102

=01102

=00102

Вроде бы так =) 

0 0
Отвечает Минин Данил.

Ты только знай , что двойка пишется с низу.. т.к в двоичной системе 2-3-4-5-6-7-8-9 нету.. 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Converting Decimal to Binary

a) 216(10) To convert 216 from decimal to binary: - The binary representation of 216 is 11011000. - Here's the breakdown: 216 ÷ 2 = 108 remainder 0, 108 ÷ 2 = 54 remainder 0, 54 ÷ 2 = 27 remainder 0, 27 ÷ 2 = 13 remainder 1, 13 ÷ 2 = 6 remainder 1, 6 ÷ 2 = 3 remainder 0, 3 ÷ 2 = 1 remainder 1, 1 ÷ 2 = 0 remainder 1. Reading the remainders from bottom to top gives 11011000.

b) 336(10) To convert 336 from decimal to binary: - The binary representation of 336 is 101010000. - Here's the breakdown: 336 ÷ 2 = 168 remainder 0, 168 ÷ 2 = 84 remainder 0, 84 ÷ 2 = 42 remainder 0, 42 ÷ 2 = 21 remainder 0, 21 ÷ 2 = 10 remainder 1, 10 ÷ 2 = 5 remainder 0, 5 ÷ 2 = 2 remainder 1, 2 ÷ 2 = 1 remainder 0, 1 ÷ 2 = 0 remainder 1. Reading the remainders from bottom to top gives 101010000.

в) 741.125(10) To convert 741.125 from decimal to binary: - The binary representation of 741.125 is 1011101101.001. - Here's the breakdown: 741 ÷ 2 = 370 remainder 1, 370 ÷ 2 = 185 remainder 0, 185 ÷ 2 = 92 remainder 1, 92 ÷ 2 = 46 remainder 0, 46 ÷ 2 = 23 remainder 0, 23 ÷ 2 = 11 remainder 1, 11 ÷ 2 = 5 remainder 1, 5 ÷ 2 = 2 remainder 1, 2 ÷ 2 = 1 remainder 0, 1 ÷ 2 = 0 remainder 1. Reading the integer part of the remainders from top to bottom gives 101110101. The fractional part is converted by multiplying the fractional part by 2, taking the integer part, and repeating the process. The fractional part is 0.125, which gives 001 in binary. Combining the integer and fractional parts gives 1011101101.001.

г) 712.375(10) To convert 712.375 from decimal to binary: - The binary representation of 712.375 is 1011001000.011. - Here's the breakdown: 712 ÷ 2 = 356 remainder 0, 356 ÷ 2 = 178 remainder 0, 178 ÷ 2 = 89 remainder 1, 89 ÷ 2 = 44 remainder 1, 44 ÷ 2 = 22 remainder 0, 22 ÷ 2 = 11 remainder 0, 11 ÷ 2 = 5 remainder 1, 5 ÷ 2 = 2 remainder 1, 2 ÷ 2 = 1 remainder 0, 1 ÷ 2 = 0 remainder 1. Reading the integer part of the remainders from top to bottom gives 1011001000. The fractional part is converted by multiplying the fractional part by 2, taking the integer part, and repeating the process. The fractional part is 0.375, which gives 011 in binary. Combining the integer and fractional parts gives 1011001000.011.

д) 184.14(10) To convert 184.14 from decimal to binary: - The binary representation of 184.14 is 10111000.001001. - Here's the breakdown: 184 ÷ 2 = 92 remainder 0, 92 ÷ 2 = 46 remainder 0, 46 ÷ 2 = 23 remainder 0, 23 ÷ 2 = 11 remainder 1, 11 ÷ 2 = 5 remainder 1, 5 ÷ 2 = 2 remainder 1, 2 ÷ 2 = 1 remainder 0, 1 ÷ 2 = 0 remainder 1. Reading the integer part of the remainders from top to bottom gives 10111000. The fractional part is converted by multiplying the fractional part by 2, taking the integer part

0 0

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос