
Решите задание номер 3


Ответы на вопрос

____________________



Task 3: Solving Equations
To solve the given equations, let's go through each one step by step.
1. \(log_3(x^2+4)=log_3(4x)\)
To solve this equation, we can use the property of logarithms that states that if \(log_a(b) = log_a(c)\), then \(b = c\). Applying this property to the given equation, we have:
\(x^2 + 4 = 4x\)
Rearranging the equation, we get:
\(x^2 - 4x + 4 = 0\)
This is a quadratic equation. To solve it, we can factorize it:
\((x - 2)^2 = 0\)
Taking the square root of both sides, we have:
\(x - 2 = 0\)
Solving for \(x\), we get:
\(x = 2\)
Therefore, the solution to the equation is \(x = 2\).
2. \(log_28=log_{16}(x)+2\)
To solve this equation, we can use the property of logarithms that states that if \(log_a(b) = log_a(c)\), then \(b = c\). Applying this property to the given equation, we have:
\(8 = 16^{\left(x+2\right)}\)
We can rewrite \(16\) as \(2^4\) since \(16\) is equal to \(2\) raised to the power of \(4\):
\(8 = \left(2^4\right)^{\left(x+2\right)}\)
Using the property of exponents that states that \(\left(a^b\right)^c = a^{b \cdot c}\), we can simplify the equation:
\(8 = 2^{4 \cdot \left(x+2\right)}\)
Simplifying further, we have:
\(8 = 2^{4x+8}\)
Since both sides of the equation have the same base, we can equate the exponents:
\(4x + 8 = 3\)
Solving for \(x\), we get:
\(4x = -5\)
\(x = -\frac{5}{4}\)
Therefore, the solution to the equation is \(x = -\frac{5}{4}\).
3. \(log_2(2x^2)-5=log_2(x) +log_2(x-5)\)
To solve this equation, we can simplify the logarithmic expressions using the properties of logarithms. First, let's simplify the left side of the equation:
\(log_2(2x^2)-5 = log_2(x) + log_2(x-5)\)
Using the property of logarithms that states that \(log_a(b) - log_a(c) = log_a\left(\frac{b}{c}\right)\), we can rewrite the equation as:
\(log_2\left(\frac{2x^2}{2^5}\right) = log_2\left(\frac{x(x-5)}{2}\right)\)
Simplifying further, we have:
\(log_2\left(\frac{x^2}{32}\right) = log_2\left(\frac{x(x-5)}{2}\right)\)
Using the property of logarithms that states that if \(log_a(b) = log_a(c)\), then \(b = c\), we can equate the expressions inside the logarithms:
\(\frac{x^2}{32} = \frac{x(x-5)}{2}\)
Multiplying both sides of the equation by \(32\) to eliminate the fraction, we have:
\(x^2 = 16x(x-5)\)
Expanding and rearranging the equation, we get:
\(x^2 = 16x^2 - 80x\)
\(15x^2 - 80x = 0\)
Factoring out \(x\), we have:
\(x(15x - 80) = 0\)
Setting each factor equal to zero, we get two possible solutions:
\(x = 0\) or \(x = \frac{80}{15}\)
Simplifying the second solution, we have:
\(x = \frac{16}{3}\)
Therefore, the solutions to the equation are \(x = 0\) and \(x = \frac{16}{3}\).
4. \(log_9(x+4)\geq log_9(2x)^2\)
To solve this equation, we can use the property of logarithms that states that if \(log_a(b) \geq log_a(c)\), then \(b \geq c\). Applying this property to the given equation, we have:
\(x + 4 \geq (2x)^2\)
Simplifying the right side of the equation, we have:
\(x + 4 \geq 4x^2\)
Rearranging the equation, we get:
\(4x^2 - x - 4 \leq 0\)
To solve this quadratic inequality, we can factorize it:
\((2x - 1)(2x + 4) \leq 0\)
To determine the sign of the expression, we can use a sign chart or test values. Testing values in each interval, we find that the solution is:
\(-\frac{4}{3} \leq x \leq 1\)
Therefore, the solution to the inequality is \(-\frac{4}{3} \leq x \leq 1\).
5. \(log_{500}500\geq log_2(1+3x)\)
To solve this equation, we can simplify the logarithmic expressions using the properties of logarithms. First, let's simplify the left side of the equation:
\(log_{500}500 \geq log_2(1+3x)\)
Using the property of logarithms that states that if \(log_a(b) \geq log_a(c)\), then \(b \geq c\), we can rewrite the equation as:
\(500 \geq 2^{1+3x}\)
Simplifying further, we have:
\(500 \geq 2 \cdot 2^{3x}\)
Dividing both sides of the equation by \(2\), we get:
\(250 \geq 2^{3x}\)
To solve for \(x\), we can take the logarithm of both sides of the equation:
\(log_2(250) \geq log_2(2^{3x})\)
Using the property of logarithms that states that \(log_a(b^c) = c \cdot log_a(b)\), we can simplify the equation:
\(log_2(250) \geq 3x \cdot log_2(2)\)
Since \(log_2(2) = 1\), we have:
\(log_2(250) \geq 3x\)
Dividing both sides of the equation by \(3\), we get:
\(\frac{log_2(250)}{3} \geq x\)
Therefore, the solution to the inequality is \(x \leq \frac{log_2(250)}{3}\).
In summary, the solutions to the given equations are as follows: 1. \(x = 2\) 2. \(x = -\frac{5}{4}\) 3. \(x = 0\) and \(x = \frac{16}{3}\) 4. \(-\frac{4}{3} \leq x \leq 1\) 5. \(x \leq \frac{log_2(250)}{3}\)


Топ вопросов за вчера в категории Окружающий мир
Последние заданные вопросы в категории Окружающий мир
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili