Вопрос задан 01.08.2018 в 21:39. Предмет Русский язык. Спрашивает Михайленко Дмитрий.

Решите уравнение 1 делить на 3х-1=х делить на 27-х

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мушенко Георгий.
1:3х-1=х:27-х
3х-х+х=-1+1+27
(плюс икс и минус икс зачеркиваем,потому что они являются противоположными и их ответ будет ноль точно также плюс 1 и минус 1)
3х=27
х=27:3
х=9
ответ: 9
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала упростим уравнение, умножив обе стороны на 3х-1 и 27-х, чтобы избавиться от знаменателей:

1 * (27-х) = х * (3х-1) 27 - х = 3х^2 - х 0 = 3х^2 - х + х - 27 0 = 3х^2 - 27

Теперь решим уравнение, используя квадратное уравнение:

3х^2 - 27 = 0 х^2 - 9 = 0 (х + 3)(х - 3) = 0

Отсюда получаем два корня: х = -3 х = 3

Таким образом, уравнение имеет два решения: х = -3 и х = 3.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам решить уравнение и показать пошаговое решение. Ваше уравнение можно записать так:

$$\frac{1}{3x-1}=\frac{x}{27-x}$$

Чтобы решить это уравнение, нужно сначала привести обе части к общему знаменателю. Для этого нужно умножить левую часть на $(27-x)$, а правую часть на $(3x-1)$. Получим:

$$\frac{1}{3x-1}\cdot(27-x)=\frac{x}{27-x}\cdot(3x-1)$$

$$\frac{27-x}{(3x-1)(27-x)}=\frac{3x^2-x}{(3x-1)(27-x)}$$

Затем нужно сократить общие множители в числителе и знаменателе. Получим:

$$\frac{1}{3x-1}=\frac{3x^2-x}{(3x-1)(27-x)}$$

$$\frac{1}{3x-1}=\frac{x(3x-1)}{(3x-1)(27-x)}$$

$$\frac{1}{3x-1}=\frac{x}{27-x}$$

Далее нужно раскрыть скобки в знаменателях и переместить все слагаемые в одну часть уравнения. Получим:

$$1(27-x)=x(3x-1)$$

$$27-x=3x^2-x-3x$$

$$0=3x^2-3x-x+27$$

$$0=3x^2-4x+27$$

Наконец, нужно решить квадратное уравнение, используя формулу дискриминанта. Дискриминант равен:

$$D=b^2-4ac$$

$$D=(-4)^2-4\cdot3\cdot27$$

$$D=16-324$$

$$D=-308$$

Так как дискриминант отрицательный, то уравнение не имеет действительных корней. Ответ: нет решений.

Если вы хотите узнать больше о решении уравнений, вы можете посетить эти сайты: [Калькулятор Уравнений - Symbolab](https://ru.symbolab.com/solver/equation-calculator) или [Mathway | Решение задач по алгебре](https://www.mathway.com/ru/Algebra).

0 0

Топ вопросов за вчера в категории Русский язык

Последние заданные вопросы в категории Русский язык

Задать вопрос