
Пруд зарастает водяными лилиями. На первый день выросла одна лилия, на второй день — две лилии, на
третий день — четыре лилии, на четвёртый день — восемь лилий, ... и так на каждый следующий день число лилий удваивалось. Наконец, на 46 день пруд зарос полностью. На который день пруд зарос наполовину? (запиши номер дня)

Ответы на вопрос




Задача, описанная в вопросе, представляет собой классический математический головолом, известный как "задача о кулинарной доске" или "задача о рисе на шахматной доске". Она также связана с понятием экспоненциального роста.
В данной задаче число лилий удваивается каждый день. Если на первый день была одна лилия, то на второй день будет 2 (1 * 2), на третий - 4 (2 * 2), на четвёртый - 8 (4 * 2), и так далее.
Общее количество лилий на N-й день можно выразить формулой: \(2^{(N-1)}\), где N - номер дня.
Теперь у нас есть формула, и нам нужно найти такое N, при котором общее количество лилий равно половине от общего количества на 46-й день. Поскольку на 46-й день пруд полностью зарос, общее количество лилий на этот день равно \(2^{(46-1)}\).
Таким образом, мы должны решить уравнение:
\[2^{(N-1)} = \frac{1}{2} \cdot 2^{(46-1)}\]
Упростим это уравнение:
\[2^{(N-1)} = 2^{(45)}\]
Сравнивая показатели степеней, мы получаем:
\[N-1 = 45\]
Теперь найдем N:
\[N = 46\]
Таким образом, пруд зарос наполовину на 46-й день.


Топ вопросов за вчера в категории Другие предметы
Последние заданные вопросы в категории Другие предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili