
(2x+3x^2 y)dx+(x^3-3y^2)dy=0


Ответы на вопрос

ответ:
2dx^2+4dx^3*y*3dy^3
и кстати, это разве относится к географии?)



To solve the given first-order ordinary differential equation (ODE):
(2x + 3x^2y)dx + (x^3 - 3y^2)dy = 0
We can use the method of exact differential equations. For an exact differential equation, there exists a function called the potential function (or simply the potential) whose partial derivatives with respect to x and y will match the coefficients of dx and dy, respectively.
Step 1: Checking for Exactness To determine if the equation is exact, check if the mixed partial derivatives are equal:
∂/∂y(2x + 3x^2y) = 3x^2 ∂/∂x(x^3 - 3y^2) = 3x^2
Since the mixed partial derivatives are equal (3x^2 = 3x^2), the equation is exact.
Step 2: Finding the Potential Function Now, we need to find the potential function F(x, y) such that:
∂F/∂x = 2x + 3x^2y ∂F/∂y = x^3 - 3y^2
Integrate the first equation with respect to x to find F(x, y):
∫(2x + 3x^2y)dx = x^2 + x^3y + g(y)
Here, g(y) is an arbitrary function of y. Now, differentiate the result with respect to y to find the partial derivative with respect to y:
∂/∂y(x^2 + x^3y + g(y)) = x^3 + g'(y)
Comparing this with ∂F/∂y = x^3 - 3y^2, we get:
x^3 + g'(y) = x^3 - 3y^2
So, g'(y) = -3y^2
Integrate g(y) to find g'(y):
∫(-3y^2)dy = -y^3 + C
where C is an integration constant. Now, we can write the potential function F(x, y) as:
F(x, y) = x^2 + x^3y - y^3 + C
Step 3: Solution The solution to the given differential equation is the equation of the potential function F(x, y) obtained in Step 2:
x^2 + x^3y - y^3 = C
where C is an arbitrary constant of integration. This represents the implicit solution to the given ODE.


Топ вопросов за вчера в категории География
Последние заданные вопросы в категории География
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili