Вопрос задан 02.07.2023 в 08:13. Предмет География. Спрашивает Дербаремдикер Даня.

7-6x-x^2 рішення квадратних нерівностей​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кияшов Артем.

Відповідь:

х1=7

х2=-1

Пояснення:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы розв'язати квадратну нерівність 76xx2>07 - 6x - x^2 > 0, спочатку знайдемо корені рівняння 76xx2=07 - 6x - x^2 = 0. Після цього ми можемо визначити інтервали, на яких вираз 76xx27 - 6x - x^2 буде більше нуля, і це допоможе нам знайти розв'язок нерівності.

  1. Знайдемо корені рівняння 76xx2=07 - 6x - x^2 = 0:

Спочатку перепишемо рівняння у звичайному порядку: x2+6x7=0x^2 + 6x - 7 = 0.

Факторизуємо ліву частину: (x+7)(x1)=0(x + 7)(x - 1) = 0.

З цього отримуємо два корені: x=7x = -7 і x=1x = 1.

  1. Визначимо інтервали, на яких 76xx27 - 6x - x^2 буде більше нуля:

Складемо таблицю ознак знаків, використовуючи корені та коефіцієнти:

markdown
x < -7 -7 < x < 1 x > 1 ----------------------------------- 7 - 6x - x^2 - + -

Таким чином, вираз 76xx27 - 6x - x^2 буде більше нуля на інтервалах 7<x<1-7 < x < 1.

  1. Отже, розв'язком квадратної нерівності 76xx2>07 - 6x - x^2 > 0 є інтервал 7<x<1-7 < x < 1.
0 0

Похожие вопросы

Топ вопросов за вчера в категории География

Последние заданные вопросы в категории География

Задать вопрос