
Вопрос задан 27.01.2020 в 16:41.
Предмет Информатика.
Спрашивает Смирнов Евгений.
Мистер Фокс разрабатывает программу для робота-лунохода. Сегодня его роботу нужно добраться по
прямой дороге длиной 22 фута от космодрома до базы, попутно забрав ценный предмет. Будем считать дорогу отрезком, в левом конце которого находится космодром, в правом конце – база, а ровно посередине – лежит ценный предмет. Мистер Фокс может давать роботу три команды: A – сместиться на 1 фут вправо, B – сместиться на 2 фута вправо, C – сместиться на 3 фута вправо. Набор из 22 фута команд A является удачным, так как приводит робота на базу (попутно он заберет ценный предмет, потому что остановится около него), а вот набор BВСССССС удачным не является: робота на базу он приведет, но вот ценный предмет робот не заберет, поскольку не остановится около него. Сколько существует удачных наборов команд?

Ответы на вопрос

Отвечает Мартынова Дарья.
Все удачные наборы команд должны включать остановку на отметке 10 футов.
На отметку 1 фут робот может попасть с помощью одной команды A;
на отметку 2 фута - с помощью команд AA и B (всего 2 набора команд);
на отметку 3 фута - с помощью команд AAA, AB, BA и C (4 набора).
Так как за одну команду робот может переместиться на 1, 2 или 3 фута, то для подсчета количества наборов команд, позволяющих роботу попасть на отметки N > 3, можно использовать формулу
K(N) = K(N-1)+K(N-2)+K(N-3).
K(4) = K(3)+K(2)+K(1) = 4+2+1 = 7
K(5) = K(4)+K(3)+K(2) = 7+4+2 = 13
K(6) = K(5)+K(4)+K(3) = 13+7+4 = 24
K(7) = K(6)+K(5)+K(4) = 24+13+7 = 44
K(8) = K(7)+K(6)+K(5) = 44+24+13 = 81
K(9) = K(8)+K(7)+K(6) = 81+44+24 = 149
K(10) = K(9)+K(8)+K(7) = 149+81+44 = 274
Так как вторая часть пути робота также имеет длину 10, то общее количество удачных наборов команд = 274*274= 75076
На отметку 1 фут робот может попасть с помощью одной команды A;
на отметку 2 фута - с помощью команд AA и B (всего 2 набора команд);
на отметку 3 фута - с помощью команд AAA, AB, BA и C (4 набора).
Так как за одну команду робот может переместиться на 1, 2 или 3 фута, то для подсчета количества наборов команд, позволяющих роботу попасть на отметки N > 3, можно использовать формулу
K(N) = K(N-1)+K(N-2)+K(N-3).
K(4) = K(3)+K(2)+K(1) = 4+2+1 = 7
K(5) = K(4)+K(3)+K(2) = 7+4+2 = 13
K(6) = K(5)+K(4)+K(3) = 13+7+4 = 24
K(7) = K(6)+K(5)+K(4) = 24+13+7 = 44
K(8) = K(7)+K(6)+K(5) = 44+24+13 = 81
K(9) = K(8)+K(7)+K(6) = 81+44+24 = 149
K(10) = K(9)+K(8)+K(7) = 149+81+44 = 274
Так как вторая часть пути робота также имеет длину 10, то общее количество удачных наборов команд = 274*274= 75076


Топ вопросов за вчера в категории Информатика
Последние заданные вопросы в категории Информатика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili