Вопрос задан 24.02.2019 в 00:54. Предмет Информатика. Спрашивает Пипаринен Диана.

У нас имеется слово "АЛФАВИТ". Буквы этого слова используются в качестве алфавита для составления

других слов неизвестного нам языка, поэтому слова не обязательно несут смысловую нагрузку понятную для нас. Слова составлены ровно из трех букв алфавита и все буквы в каждом слове различны. Два слова считаются одинаковыми тогда и только тогда, когда если они абсолютно совпадают. Например слова ВИТ и ТИВ различны. Сколько получится различных новых слов?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мамонова Карина.
  Всего 7 букв , так как порядок букв имеет место то это число размещении без повторений.  Если бы не имел то это было бы число сочетаний. 
A^{3}_{7}=\frac{7!}{4!}=210
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

У нас есть слово "АЛФАВИТ" и мы можем использовать его буквы для составления других слов. Слова должны состоять ровно из трех букв алфавита, и все буквы в каждом слове должны быть различными.

Для решения этой задачи можно использовать комбинаторику. У нас есть 6 различных букв в слове "АЛФАВИТ". Мы должны выбрать 3 буквы из этих 6 для составления нового слова.

Количество способов выбрать 3 буквы из 6 можно вычислить с помощью формулы сочетаний: C(6, 3) = 6! / (3! * (6-3)!) = 20.

Таким образом, у нас будет 20 различных новых слов, которые можно составить, используя буквы слова "АЛФАВИТ".

0 0

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос