Вопрос задан 06.02.2019 в 19:34. Предмет Информатика. Спрашивает Романов Николай.

Составить алгоритм нахождения НОД трех натуральных чисел, используя вспомогательный алгоритм

нахождения НОД двух чисел.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Александрова Виктория.
При нахождении наибольшего общего делителя отрицательные числа можно заменить их абсолютными величинами, то есть, НОД(−585, 81, −189)=НОД(585, 81, 189). Разложения чисел 585, 81 и 189 на простые множители имеют соответственно вид585=3·3·5·13, 81=3·3·3·3 и 189=3·3·3·7. Общими простыми множителями этих трех чисел являются 3 и 3. Тогда НОД(585, 81, 189)=3·3=9, следовательно,НОД(−585, 81, −189)=9.Ответ:НОД(−585, 81, −189)=9.
0 0

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос