Вопрос задан 18.02.2019 в 08:50. Предмет Биология. Спрашивает Бербер Елизавета.

Молекулярна структура і-РНК

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Цар Надія.
Матричная (і-РНК) несёт информацию о первичной структуре белка из ядра в цитоплазму, состоит из 300-30000 нуклеотидов, занимает 5% от общего количества РНК в клетке. 
Участвует в синтезе белка из аминокислот, т.е. в ней это и содержится.
(Заранее приношу извинение если не правильно, просто на молекулярном уровне я что-то подзабыл возможно)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Molecular Structure of RNA

RNA (ribonucleic acid) is a type of nucleic acid that plays a crucial role in various biological processes, including protein synthesis and gene regulation. It is composed of a chain of nucleotides, which are the building blocks of RNA. The molecular structure of RNA is similar to that of DNA (deoxyribonucleic acid), but with a few key differences.

1. Nucleotides: RNA is made up of nucleotides, which consist of three components: a nitrogenous base, a sugar molecule (ribose), and a phosphate group. The four nitrogenous bases found in RNA are adenine (A), cytosine (C), guanine (G), and uracil (U). Unlike DNA, which contains thymine (T) instead of uracil, RNA uses uracil as one of its bases.

2. Sugar-Phosphate Backbone: The nucleotides in RNA are connected by phosphodiester bonds, forming a sugar-phosphate backbone. The sugar molecules in RNA are ribose, which contains an additional hydroxyl group compared to the deoxyribose sugar found in DNA. This difference in sugar structure gives RNA its name and contributes to its distinct properties.

3. Single-Stranded Structure: Unlike DNA, which typically forms a double helix, RNA is usually single-stranded. However, certain types of RNA can fold back on themselves and form secondary structures, such as hairpin loops and stem-loop structures. These secondary structures are important for RNA's various functions, including binding to proteins and other molecules.

4. RNA Folding: The folding of RNA molecules is determined by the specific sequence of nucleotides and the interactions between different regions of the RNA chain. The folding process is guided by base pairing between complementary bases, such as A-U and G-C. This base pairing allows RNA to adopt complex three-dimensional structures, which are essential for its biological functions.

5. Functional Regions: RNA molecules can contain different functional regions, each with a specific role. For example, messenger RNA (mRNA) carries the genetic information from DNA to the ribosomes for protein synthesis. Transfer RNA (tRNA) helps in the translation of mRNA into proteins by carrying amino acids to the ribosomes. Ribosomal RNA (rRNA) forms the structural components of ribosomes, where protein synthesis occurs.

In summary, the molecular structure of RNA consists of a chain of nucleotides connected by phosphodiester bonds, with a sugar-phosphate backbone. RNA is typically single-stranded but can form secondary structures through base pairing. The specific sequence and folding of RNA molecules determine their functions in various biological processes

0 0

Топ вопросов за вчера в категории Биология

Последние заданные вопросы в категории Биология

Задать вопрос